A RESOLUTION ON THE PROPOSED MODIFICATIONS TO SMITH LEVEL ROAD Resolution No. 94/2002-03 WHEREAS, the N.C. Department of Transportation (NCDOT) has proposed to widen a portion of Smith Level Road, TIP Project U-2803; and WHEREAS, a public hearing on the proposed widening of Smith Level Road was held on October 25, 2001; and WHEREAS, the Board of Aldermen has requested that NCDOT provide additional information on the project in response to citizen and Town comments; WHEREAS, On October 15, 2002, the Board of Aldermen held a joint worksession with the Transportation Advisory Board to discuss the proposed widening project; and NOW, THEREFORE, BE IT RESOLVED by the Carrboro Board of Aldermen that the Board accepts the report and select Option ____ as identified in the staff report. This is the 11th day of February in the year 2003. #### TRANSPORTATION ADVISORY BOARD #### RECOMMENDATION ### **November 21, 2002** SUBJECT: Proposed Widening of Smith Level Road Motion: The Transportation Advisory Board (TAB) recommends that the Board of Aldermen reject NCDOT's proposal for widening Smith Level Road to four lanes. Moved: Ginny Wolpin Second: Ellen Perry VOTE: Ayes (Chris van Hasselt, Ellen Perry, Elizabeth Shay, Ginny Wolpin, Debbie Freed, Dazzie Lane), Noes (None) The TAB also provided additional comments on the project to be provided to the Board of Aldermen: - It is encouraging that NCDOT added a roundabout to the project at Rock Haven Road and a roundabout should also be considered at the Culbreth Road intersection. However, a careful engineering and suitability analysis is necessary when considering a roundabout as part of this project. - There should be a meeting between NCDOT and the school board to address the issues at Frank Porter Graham School. - Improvement to the operation of the interchange at Smith Level Road and NC 54 Bypass should be addressed as part of the project. - There should be bicycle lanes and sidewalks on both sides of Smith Level Road. - That the Berryhill neighborhood's proposal to extend the right lane south across the bridge to Willow Oak Lane be considered as part of the design. | CHRIS VAN | HASSELT | (LOM) | | 03 | |-----------|---------|-------|------|----| | TAB Chair | | | DATE | | ## TOWN OF CARRBORO #### NORTH CAROLINA The following resolution was introduced by Alderman Alex Zaffron and duly seconded by Alderman Mark Dorosin. # A RESOLUTION ENDORSING STAFF COMMENTS CONCERNING PROPOSED IMPROVEMENTS TO SMITH LEVEL ROAD (TIP PROJECT U-2803) Resolution No.184 /1999-2000 WHEREAS, the Carrboro Board of Aldermen has been planning for and requesting improvements to Smith Level Road since 1985, and WHEREAS, the NCDOT held a Citizen's Informational Workshop on April 19, 2000 and, in follow-up, requested comments from the town concerning the two options under consideration, and WHEREAS, the town's original request specified a four-lane median divided. facility, and this section is one of the two under consideration. NOW, THEREFORE BE IT RESOLVED by the Carrboro Board of Aldermen that the Aldermen has reviewed a letter submitted by staff in anticipation of the Board's consideration of this matter on June 27, 2000 and concur, as follows: 1. That the town supports the design of a four-lane median divided facility with bike lanes and sidewalks. The foregoing resolution, having been submitted to a vote, received the following vote and was duly adopted this 27th day of June, 2000. AYES: Alex Zaffron, Mark Dorosin, Michael Nelson, Diana McDuffee NOES: None ABSENT/EXCUSED: Joal Hall Broun, Jacquelyn Gist, Allen Spalt I, Sarah C. Williamson, Town Clerk of the Town of Carrboro, do handly went that the foregoing is a true and correct copy of a resolution adopted by the Ostrological Aldermen on June 27, 2000. To William Town © Walkable Communities, Inc. March 1999 # Road Diets Losing width and gaining respect Can our nation's roads gain efficiency, mode share and safety by getting leaner? Many are doing just that. Nationwide, engineers are putting roads on "diets," helping them lose lanes and width. In the process formerly "fat" streets often become leaner, safer, and more efficient. They become multi-modal and more productive. In many cases these former "warrior" roadways are tamed and turned into "angels." Often these changed roads set the stage for millions or megamillions of dollars in new commercial and residential development. The change can increase value of existing properties. In some cases costs of reconstructing roadways are repaid in as little as one year through increased sales tax or property tax revenue. Roadway conversions discussed here may be just the ticket to start remaking unhealthy, unsafe city neighborhoods or commercial districts and turn them into more robust, vital, economically sound places. Road conversion may be undertaken to create safer, more efficient ways to provide access and mobility for pedestrians, bicycle riders and transit users, as well as motorists. They improve livability and quality of life for residents and shoppers. Just as with human diets, road diets without doctors' (transportation planners and engineers) analyses and prescriptions, might be foolhardy. ## **Turn Lanes Help Road Capacity** Capacity remains the same. By keeping the full number of lanes at intersections, 4-lane to 2-lane conversions often keep the same high capacity of original 4-lane roadways. Turn lanes can be created at intersections. Mobility and Access Improve. Four-lane roadways significantly discourage mobility and access of transit users (cannot cross these streets), pedestrians and bicyclists. Communities, interested in providing higher levels of service and broadening transportation choices, find street conversions essential to success. Cities like Toronto in Ontario, Canada; Santa Monica, Pasadena, Arcada and Mountain View in California; Seattle, Kirkland, Gig Harbor, University Place and Bellevue in Washington; and Portland, Eugene and Bend in Oregon; are finding funds to increase mobility and access by reducing the number of lanes and widths of arterial and collector streets. Conversions are Not New. Transportation engineers and safety specialists have long known that overloaded two-lane or four-lane roads of any volume can be risky places to drive, conduct business, attempt to access transit, walk or bicycle. On such roadways, frequent turning movements into commercial and residential driveways can result in high crash levels. On multi-lane roadways lane swapping adds friction and reduces performance. Safety Improvements. In the 1980's Pennsylvania DOT engineers used FHWA safety monies to fully fund a study and to convert a one-mile section of Electric Avenue in Lewistown, Pennsylvania, from four lanes to three. The roadway was carrying 13,000 ADT. After reviewing hours of time-lapse video and analyzing crash statistics and other data, the team concluded that more uniform flow, reduced conflicts and great reduction in crashes would result from four to three-lane conversion. The change was made facing 95% opposition from local residents, who felt that their trip times would increase. Once the new roadway section was completed, new time-lapse photography and data collection began. Dangerous maneuvers and crashes dropped to nearly zero. Overall trip times were unaffected. Today nearly 95% of those fearing the change are openly thankful to PennDOT for making the roadway better for safety, mobility and access. Full roadway diets still move cars, but now the corridor moves people as well. Both Bellevue, Washington, and Mountain View, California, have converted formerly four-lane sections to pedestrian and bicycle friendly roads. Motorists benefit from more border width to fixed objects and are more comfortable with bicyclists and pedestrians. Many Roadways Await Change. America has a plethora of "leftover" four-lane roadways. Many bypasses and other road improvements leave four-lane roads ready for conversion. At the same time thousands of miles of new four-lane sections are proposed and built each year. Many of these roadways would be better designed with odd numbers of lanes or two lanes, plus medians with turning pockets. During the past twenty years many new roadways have been constructed with three or five lanes. (Third or fifth lanes are scramble or two-way left turn lanes - TWLTLs.) These lanes add as much as 30 percent to efficiency of movement, and they often cut number of crashes in half. Significant bodies of research have proven the value of shifting left turn movements from main through movement. Typically in these cases, however, roadways have been widened from two to three lanes or from four to five lanes. This widening often converts sidewalks and paved shoulders or requires high cost, right-of-way acquisition. In many such cases "roadway improvements" only allow more cars into traffic streams, encouraging communities to become more car dependent. Increased congestion sends roadways' level of service into long-term slide. Changes often generate more speed, noise and danger to people trying to walk, shop or live on main streets or neighborhood collectors. Property values can diminish, and towns lose their livability factors and competitive edges. This process of roadway widening can be thought of as fattening a patient. The belt is let out another notch, and the patient puts on a few more unhealthy pounds toward auto dependency. The Road Diet. "Road dieting" is a new term applied to "skinnying up" patients (streets) into leaner, more productive members of society. The ideal roadway patient is often a four-lane road carrying 12-18,000 auto trips per day. Other roadway patients may be helped through this same process. Some especially sick four-lane patients may be carrying 19-25,000 cars per day, but still qualify for diets. What are the symptoms that scream for change? What roadways are ideal patients? And what are the upper limits? #### Road Diets by Dan Burden and Peter Lagerwey ## **Spare Lanes Reward Speeders** NW 8th Avenue in Gainesville, Florida. This four-lane roadway is an excellent candidate for "road dieting." Today, motorists race from the signal anticipating the merge to 2-lanes, 3000 feet ahead. Excessive speeds of 50 mph are common. School, park and bicycle trail crossing are located here. Two-lane roadway with bike lanes, medians and turning lane at the intersection is suggested by safety advocates as an alternative. The redesigned roadway would increase capacity by lowering speed. Sick Road Patient Symptoms. Four lane road-ways often generate excessive speeds. These road-ways also erode the ability for transit, walking and bicycling to succeed. How does this happen? Motorists using four-lane roadways, note that there are always spare lanes in their direction. They tend to drive faster than they should. Motorists using multilane roads seek to match speeds of other drivers. Imprudent, speeding drivers tend to set prevailing speeds. As traffic volumes increase, especially at rush hour, risk of high-speed driving increases. During peak volumes, right or left-turning movements occur. Also during these times, many motorists drive close to one another creating "screens" of impeded view. Last minute, instant swapping of lane behavior to stay in motion leads to serious rear-end crashes. Motorists move from lanes of slowing vehicles directly into the backs of other motorists who have already slowed for their turns. The upper comfort range for arterial conversions appears to be between 20-25,000 ADT. Higher numbers have been achieved. Santa Monica officials feel most comfortble capping at 20,000, although they have hit 25,000. Pedestrians at Risk. Pedestrians have rugged times finding gaps across four lanes. Crash rates and severity of conflicts with autos result in almost certain death (83% of pedestrians hit at 40 mph die). Many bicyclists find four-lane roads too narrow to ride comfortably. Transit users cannot safely cross streets at most locations. Thus, many people, who have formerly had mode choice, give up trying to cross streets converted to four lanes. Instead they join the daily traffic stream and add to the roadways' level of service drain. Typical Patient and Process. Burcham Road in East Lansing, Michigan, was formerly a "fat road." Speeds were excessive. Pedestrians near the high school found it unsafe to cross the four-lane roadway. Neighbors complained about noise and danger. East Lansing's traffic engineer, John Matusik, P.E., felt that this roadway was a prime candidate for a road diet. The roadway carried 11-14,000 cars per day (AADT). Viewed from another perspective, 14,000 cars in four lanes over a ten hour period is only 3,500 per lane per day, or 350 per hour for a tenhour period. Each lane is capable of carrying 1,900 cars per hour. Thus, cutting the number of lanes in half wouldn't affect traffic capacity. The Diet Begins. The change on Burcham Road was made (see picture). With "leftover" road space John added turn lane (TWLTL) and bike lanes. The bike lanes give motorists more border width, moving them six feet further from fixed objects such as utility poles, hydrants and other fixed objects. Cars move today at more uniform speeds (prudent drivers set prevailing speeds). People are able to enter and exit driveways more easily. # Burcham Road's Four-Lanes to Three-Lanes Pedestrians and motorists are more comfortable today. Motorists are easily 10 feet from fixed objects. As much as sixteen feet separate pedestrians from motorists. Pedestrians have six feet more separation from motorists. Comfort levels of all people using the corridor have markedly improved. Bigger Roads, Same Diet. Once John had proven he could make a moderate volume, four lane into a healthier patient, he pushed Michigan DOT to use the same diet strategy on a higher volume road, the central artery through East Lansing, Grand River Boulevard. The 23,000 AADT roadway had been sluggish and risky for years. People did not enjoy living along it or driving, walking, using transit or bicycling this corridor. This roadway section was 1.1 miles in length. The roadway serves as a regional traffic distributor. It has minimal number of commercial driveways, thus turning movements are modest. Two Stage Implementation. Michigan DOT staff took deep, uncertain breaths and made this higher volume road conversion in two safe, evaluative steps. As Michigan DOT resurfaced Grand River Boulevard, they wanted the option of going back to four lanes if the "experiment" didn't work. They painted new lane markings, using two-lanes, plus center turn lane (TWLTL). They omitted bike lanes in the first stage. Some drainage grates needed to be swapped before they added bike lanes. But they also wanted the chance to switch back. The conversion worked, but it was slightly shaky. With the loss of two lanes on the departure side of signalized intersections, traffic now merged into orderly, lower paced movement. Speeds came down to more preferred speed of around 35 mph (down from 40). Yet, some confusion remained. Resulting travel lanes were sixteen feet wide. Second stage markings were made six months later. Bike lanes were added, narrowing travel lanes to twelve feet. Speeds were reduced slightly more, and confusion ended. Today planners and engineers from both city and state report greater safety, efficiency, and more than adequate movement during peak hours. Again, people walking, using transit and bicycling find the area more comfortable and safe. Crash records are being kept. Potential conflicts and speeds are greatly reduced. Property owners are pleased with reduced speeding, noise and challenge of entering and exiting their driveways safely. Bike lanes give them more turning radius and improved sight triangles. Today East Lansing is in the early stages of converting two to six more roadways. They find that they can make many of these conversions at no cost. They wait for lane markings to fade (easy with winter snow plow scraping), or they make changes with resurfacing projects. Other Cities, Higher Numbers. East Lansing is not the first community to make these changes. Seattle, Portland and Santa Monica are three communities that have been making these lane # **High Volume Conversion in Kirkland** For a short period during area road construction, Kirkland's Lake Washington Boulevard picked up additional load and was successfully carrying 30,000 ADT. This fourlane to three-lane conversion has been very successful. Note how much easier it is for motorists to enter and exit driveway., Added border width provides motorists safer conditions. Caution, this 30,000 figure is real for one portion of this roadway, but may be beyond the comfort range of many. For a more comfortable number 20-23,000 is achieveable in most areas. reductions for years. Seattle made its first conversion (N 45th Street in 1972. Since then they have successfully converted 8 additional roadways. Many of these include commercial sections. Kirkland, Washington, Pushes Numbers to the Limit. So far, the record for roadway conversion with highest traffic counts is Lake Washington Boulevard in Kirkland, Washington. This largely residential street travels by high priced homes with spectacular views of Lake Washington. When Lake Washington Boulevard was operated with four lanes, capacity problems were reached most evenings. Residents trying to enter or exit driveways on both sides of the road tended to constrain the flow on the 20,000 AADT roadway. Switching to three-lanes on the roadway was easy. The results were impressive not only to drivers, but to pedestrians, transit users and bicyclists as well. Motorists now had substantial added border width to fixed objects. Residents saw reduction in speeding and noise levels, and they could now enter and exit their driveways much more easily. Kirkland Tests Ceiling with Lake Washington Boulevard. In 1995, Kirkland closed another roadway for reconstruction. They forced totals of 30,000 vehicles (ADT) onto the two + TWLTLroadway. The roadway never crashed. These extremely high numbers continue to astound researchers. What is the upper limit? This 30,000 ADT may be it. In most cases carrying capacity numbers must be lower. Researchers do not have enough knowledge to say where and how peaks are reached, but many feel comfortable with 20-23,000 ADT's. Each community must set its own upper limits. Four-Lane to Two-Lane Conversions. More aggressive diets drop four lanes down to two. Fewer roadways can undergo this more aggressive conversion. Roadway conversions in Toronto, Ontario, are proving safety and livability benefits of these changes, while holding to previous capacities. More than six formerly four-lane roadways have been converted to either two-lane roads with medians and turning pockets, or simply two lanes. St. George Street, a principal arterial through the University of Toronto Campus is perhaps the best known. This 16,000 ADT roadway owes its success to low number of driveways. The roadway holds its full capacity at intersections by keeping the previous number of storage lanes. The 1.1 mile roadway project was launched when a local benefactor to the University of Toronto challenged the city to the improvement by putting up her \$1 million in match money. The University contributed \$500,000 (Canadian), and the City of Toronto gave the additional \$2.5 million match for a total rebuild price of \$4 million. The road was totally reconstructed. New foundations, improved intersections, greatly widened sidewalks, bike lanes and full canopy of # St. George Street in Toronto, Ontario (Right and Above) In 1997 this onemile section of St. George Street was converted from four lanes to two lanes at a cost of \$4 M Canadian. The roadway carries the same capacity as before. Note capacity is well handled at each intersection. The project began when a benefactor to the University of Toronto pledged \$1M on the condition that the University and City would contribute the balance of \$3million. trees were placed. Today walking, transit and bicycling are pleasurable activities; speeding has dropped, and the center of campus has come alive with people. Other Four-Lane to Two-Lane Conversions. Toronto has also converted five other roadways. In each case the same volume of auto traffic is serviced, always at lower, more appropriate speeds. As with four-lane to three-lane conversions, prudent drivers set the speed. Many of these additional roadways operate with 11-17,000 ADT. Some sections are reduced from four lanes to two lanes to incorporate critical pedestrian crossings; then they widened back out 1,000 feet further downstream. Many combinations of road diet techniques are practicable. Seattle, Washington; Portland, Oregon; Santa Monica and Mountain View, California; and dozens of other cities are making similar conversions. These streets are made more business, resident, transit, bicycle and pedestrian friendly by placing medians with turning pockets and bike lanes in the mix. What is the future? In the past two years the principle author of this article, Walkable Communities Director, Dan Burden, has been to more than 500 cities in North America. Almost every town he visits has at least two or three streets ideal for conversion. In California, alone, more than 20 cities have made successful conversions. Dan's advice, "Elected officials, business leaders and engineers should look for easy conversions first." All but the most self-evident projects are likely to generate concern from business leaders and nearby residents who worry that traffic might back into their neighborhood streets. The public has come to believe that the only way to improve roadways is to widen entire sections. Model projects are needed. Best Model Projects. First projects should include roadways with some of the following criteria: - Ö Moderate volumes (8-15,000 ADT) - Ö Roads with safety issues - Ö Transit corridors - Ö Popular or essential bicycle routes/links - Ö Commercial reinvestment areas - Ö Economic enterprise zones - Ö Historic streets - Ö Scenic roads - Ö Entertainment districts - Ö Main streets The Process of Change. Street conversions are as much process as they are product. Due to the controversial nature of the first road diet conversions, it is essential to involve the public through highly interactive processes. As pointed out earlier in this article with Electric Avenue in Lewistown, Pennsylvania, 95 percent of the citizens were against the change. #### Road Diets by Dan Burden and Peter Lagerwey Effective process often includes focus groups, and highly interactive workshops and designs. Citizens, residents and business owners should help design both process and product. Many cities are learning to conduct 3-6 day planning charrettes to gain input from a variety of people who then gain ownership of the results. Atlantic Boulevard in downtown Del Ray Beach, Florida, was converted from four-lane to two-lane roadway at the request of retailers. This request was the reverse of previous thinking. Merchants often feel that more traffic passing their doors is better for business. In Del Ray Beach the decaying downtown forced merchants to take another look. Retailers worked with the city manager, elected officials, and chamber of commerce to weigh their risks and suggest changes. The net result of this street conversion is one of the more successful downtowns in Florida, and significant increase in local sales and tax base for the town. Motorists did not leave Atlantic Boulevard to take advantage of two new lanes of travel on parallel streets. They come through the now attractive center, cruising at 15 mph. | Roadway Section | Change ADT | (Before) | (After) Not | tes | |-------------------------------------------------------------------|------------------------------------------------------------------|-----------|-------------|-----| | Lake Washington Blvd., Kirkland, Washington South of 83 | 4 lanes to 2 + TWLTL + bike lanes | 23,000 | 25,913 | | | 2. Lake Washington Blvd,
Kirkland, Washington
Near downtown | 4 lanes to 2+ TWLTL + bike lanes | 11,000 | 12,610 | | | 3. Electric Avenue,
Lewistown, Pennsylvania | 4 lanes to 2 + TWLTL + bike lanes | 13,000 | 14,500 | | | 4. Burcham Road,
East Lansing, Michigan | 4 lanes to 2 + TWLTL + bike lanes | 11-14,000 | 11-14,000 | - | | 5. Grand River Boulevard,
East Lansing, Michigan | 4 lanes to 2 + TWLTL + bike lanes | 23,000 | 23,000 | | | 6. St. George Street,
Toronto, Ontario, Canada | 4 lanes to 2 + bike lanes + wide sidewalks | 15,000 | 15,000 | | | 7. 120th Avenue, NE
Bellevue, Washington | 4 lanes to 2 + TWLTL | 16,900 | 16,900 | | | 8. Montana (commecial street) Bellevue, Washington | 4 lanes to 2 lanes + TWLTL
4 lanes to 2 + median + bike lanes | 18,500 | 18,500 | | | 9. Main Street
Santa Monica, California | 4 lanes to 2 lanes + TWLTL
4 lanes to 2 + median + bike lanes | 20,000 | 18,000 | | | Lane Reductions of Select Street Conversions Volume Changes | | | | | | | |--|---|----------------------------|-------------|--|--|--| | Roadway Section | Change
and Date | ADT (Before) | ADT (After) | | | | | 9. Danforth
Toronto, Ontario, Canada | 4 lanes to 2 + bike lanes
4 lanes to 2+ turning pool | 22,000
kets+ bike lanes | 22,000 | | | | | Seattle, Washington | | | | | | | | 10. Greenwood Avenue
N, from N. 80th St to N 50th | 4 lanes to 2, plus
TWLTL Plus Bike lanes
April, 1995 | 11,872 | 11,2427 | | | | | 11. N 45th Street in
Wallingford Area
Seattle, Washington | 4 lanes to 2 lanes
plus TWLTL
December, 1972 | 19,421 | 20,274 | | | | | 12. 8th Ave. NW in
Ballard Area
Seattle, Washington | 4 lanes to 2 lanes
plus planted median
with turn pockets
January, 1994 | 10,549 | 11,858 | | | | | 13. Martin Luther
King Jr. Way,
north of I-90 | 4 lanes to 2 lanes
plus TWLTL, plus
bike lanes
Jan 1994 | 12,336 | 13,161 | | | | | 14. Dexter Avenue, N. East side of Queen Anne Area | 4 lanes to 2 lanes plus TWLTL and bike lanes | 13,606 | 14,949 | | | | | 15. 24th Ave. NW,
from NW 85th St.
to NW 65th St. | 4 lanes to 2 lanes plus TWLTL | 9,727 | 9,754 | | | | | 16. Madison St., from
7th Ave. to
Broadway | 4 lanes to 2 lanes plus TWLTL | 16,969 | 18,075 | | | | | 17. W. Government Way/Gilman Ave. W,. from W Ruffner St. to 31st Ave. W. | 4 lanes to 2 lanes
plus TWLTL plus
bike lanes | 12,916 | 14,286 | | | | Dan Burden served for sixteen years as state bicycle and pedestrian coordinator for the Florida Department of Transportation. In his new role as the director of Walkable Communities, Inc., Dan has promoted and helped the process for more than a dozen conversions of collector and arterial streets. Dan teaches courses for the Federal Highway Administration, National Highway Institute and the National Highway Traffic Safety Administration. Dan is the author of the Healthy Streets booklet which provides guidelines for building traditional neighborhood development (TND), published by the Local Government Commission, Center for Livable Communities. For more information contact webpage: www.lgc.org/clc/ Peter Lagerwey is the pedestrian/bicycle coordinator for the City of Seattle Engineering Department. Peter has overseen and monitored conversion of four street lane reduction projects. Peter recently spent a full year on assignment as pedestrian/bicycle planner for Perth, Australia. Peter is an instructor for FHWA's Pedestrian Road Show, as well as for a number of state agencies. Additional Article: See Andrew G. MacBeth, P.E. Calming Arterials in Toronto, paper delivered to the 68th ITE Annual Meeting, August 10, 1998 (Accepted by ITE for 1999 publication in ITE Journal)